Optimal Design of a Brushless DC Motor, by Cuckoo Optimization Algorithm (RESEARCH NOTE)
Authors
Abstract:
This contribution deals with an optimal design of a brushless DC motor, using optimization algorithms, based on collective intelligence. For this purpose, the case study motor is perfectly explained and its significant specifications are obtained as functions of the motor geometric parameters. In fact, the geometric parameters of the motor are considered as optimization variables. Then, the objective function has been defined. This function consists of three terms i.e. losses, construction cost and the volume of the motor which should be minimized simultaneously. Three algorithms i.e. cuckoo, genetic and particle swarm have been studied in this paper. It is noteworthy that, cuckoo optimization algorithm has been used for the first time for brushless DC motor design optimization. A comparative study between the mentioned optimization approaches shows that, cuckoo optimization algorithm has been converged to optimal response in less than 250 iterations and its standard deviation is , while the convergence rate of the genetic and particle swarm algorithms are about 400 and 450 with standard deviations of and , respectively for the case study motor. The obtained results show the best performance for cuckoo optimization algorithm among all mentioned algorithms in brushless DC motor design optimization.
similar resources
Design and optimization of dc brushless permanent magnet motor
Electric motors that have found wide application in various sectors of industry Have unique features such as high reliability, high efficiency, quick acceleration and have small sizes. Brushless DC motors meet these requirements well. In this study, the design of a brushless DC motor speed limits for the particular application at 1800 rpm that can be equivalent to 140 watts output was provided....
full textDesign, Optimization and FEM Analysis of a Surface-Mounted Permanent-magnet Brushless DC Motor
In this paper a fast analytical algorithm for design a surface-mounted PM Brushless DC motor (SMPM-BLDC) for variable-speed application based on electromagnetic field analysis and RSM optimization algorithm is discussed. To achieve the desired performance, the physical dimensions of the proposed SMPM-BLDC motor subject to minimal ripple torque utilizing RSM optimization algorithm were optimized...
full textDesign Optimization of Permanent Magnet Brushless Dc Motor
This paper presents performance analysis of permanent magnet brush less dc motor (BLDC) using FEA based CAD package MagNet 6.13.First the characteristics of the standard BLDC motor is analysed. Then the design modifications are introduced and the performance of the machine is analysed. Based on the results optimum design is obtained.
full textDesign Optimization of Axial Flux Surface Mounted Permanent Magnet Brushless DC Motor For Electrical Vehicle Based on Genetic Algorithm
This paper presents the design optimization of axial flux surface mounted Permanent Magnet Brushless DC motor based on genetic algorithm for an electrical vehicle application. The rating of the motor calculated form vehicle dynamics is 250 W, 150 rpm. The axial flux surface mounted Permanent Magnet Brushless DC (PMBLDC) motor was designed to fit in the rim of the wheel. There are several design...
full textAerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)
An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...
full textOptimal Tuning of PID Controller for a Linear Brushless DC Motor using Particle Swarm Optimization Technique
This Paper presents a novel Cultural Algorithm based particle swarm optimization (PSO) technique which is intended to assist in converging to a accurate solution in the control of Linear Brushless Direct Current motor (LBLDC). With the novel PSO-based approach the optimal Proportional-Integral-Derivative (PID) controller parameters are deduced for efficient speed control of Linear Brushless DC ...
full textMy Resources
Journal title
volume 30 issue 5
pages 668- 677
publication date 2017-05-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023